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Abstract 

Site selection is a complex, multicriteria process and a key if poorly understood con-

tributor to the success of new scientific facilities. Typical site selection factors include 

the budget, sustainability, accessibility, utility and infrastructure costs, and environ-

mental factors, e.g., air quality. Ideally, site selection should also reflect the organi-

zational imperatives that drive the construction of new facilities in higher education, 

such as stimulating cross-disciplinary scientific collaboration. Traditional site selection 

is ill-equipped to account for the complex configurational effects of the built environ-

ment on cross-disciplinary scientific collaboration. Systems approaches, like network 

analysis, enable the simultaneous examination of a system (e.g., built environment) 

and its parts. This paper reports on a novel application of network analysis to exam-

ine the potential for site selection for cross-disciplinary collaboration for the Plant 

and Environmental Science Building (PESB) at Michigan State University (MSU). 

The network analysis of the two potential PESB sites, A and B, helped to identify 

which of the two sites is better configured to foster connections within PESB’s future 

research community. The results indicate site A’s paths are less deep on average and 

have more connections between other pairs of paths. Site A’s network is also more 

cohesive and less fragmented. Site A is thus better configured to support potential 

encounters and has a higher spatial legibility which correlates with better cognitive 

maps for individuals. These findings are all positively associated with collaboration. 

The study illustrates that network analysis can enable site selection that accounts for 

key organizational imperatives like cross-disciplinary collaboration.

Introduction

The research ecosystems in public universities in the United States are facing difficult 
and uncertain budgetary environments with respect to funding for new scientific 
facilities, and leaders are increasingly expected to do much more with significantly 
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less [1]. This is part of a broader phenomenon in OECD countries where the rate of 
growth of public research spending has declined sharply over the last three decades 
[2]. In this environment, universities face increased pressure to ensure that new 
scientific buildings are not only cost-effective but also meet the dynamic demands 
of their research and education missions. The placement of new scientific build-
ings within a university campus has non-negligible impacts on their occupants with 
respect to outcomes such as cross-disciplinary scientific collaboration [3]. Consid-
ering this, it is therefore noteworthy that the site selection process for new scientific 
buildings seldom incorporates cross-disciplinary scientific collaboration as a key 
decision criterion. This paper presents the study findings for a novel application of 
network analysis to examine the site selection process for a new scientific build-
ing at a major research university in the United States. While this specific case is a 
research-focused, interdisciplinary science facility the study has applicability to the 
site selection decision-making process for research and technology facilities in gen-
eral. The work in this paper bridges a research gap on how the site selection process 
can incorporate organizational imperatives like cross-disciplinary collaboration.

There is compelling evidence that when it comes to cross-disciplinary collabora-
tion, the spatial environment exerts significant influences. The research on spatial 
impacts on collaboration is robust as it spans disciplines, geography, and even 
straddles the COVID-19 pandemic [3–10]. Most studies, however, operationalize 
spatial effects using a distance decay function, based on the hypothetical premise 
that greater distances have negative impacts on complex social interactions and 
relationships, including collaborative ties (see, for example, [11, 12]). Spatial net-
works allow us to understand how position in space impacts collaboration outcomes. 
Further, spatial networks can yield critical insights into how the topological structure 
of a site or location shapes the social interactions that pertain to collaboration [4,13]. 
Moreover, site-specific network-level metrics enable us to compare the differences 
across sites or locations that likely impinge on interactions and collaborations among 
occupants and users.

Economic and real estate development professionals are keenly aware that site 
selection is critical to the future success and sustainability of any project or venture, 
including infrastructure projects such as buildings [14]. Where in economic and 
real estate development it is typical to optimize site selection with respect to a focal 
project or building, for universities the typical approach is to fit new buildings into 
an existing campus master plan. This approach in higher education privileges the 
larger scale of the entire university rather than individual buildings [15–17]. But in the 
context of declines in funding for scientific facilities, it means that there are higher 
costs to the type of failure that results from improper site placement of a building or 
facility. Simply, there are fewer financial resources to allow a “do over” and especially 
in the short- and medium-term. Rather, given the increasingly limited opportunities to 
construct new scientific buildings, institutions of higher education must hit the prover-
bial “home run” when it comes to optimizing for desired organizational outcomes like 
interdisciplinary collaboration. Over the last five decades, there have been relatively 
fewer opportunities for colleges and universities to construct new scientific buildings, 
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especially when compared to the first three decades following the Second World War. This situation is related to the 
broader funding situation for higher education in the United States and other western nations.

The limited availability of funding for infrastructural spending in higher education [1] has been fueled by larger forces 
such as economic downturns, demographic shifts (hence declining enrollments), and shifting priorities among govern-
ments [18–20]. Unfortunately, the increasing scarcity in resources for constructing new scientific buildings coincides 
with the pressing need to replace aging infrastructure, some of which was constructed in the 1950s. This is a time when 
federal funding for scientific infrastructure as a percentage of all federal R&D funding was roughly three to six times higher 
than it is today [21].

Funding for the construction of scientific facilities

In the United States, there has been a downward trend in government funding for higher education and public research. 
Economic downturns and shifts in state and local government priorities have led to a gradual, long-term reduction in 
spending on higher education (including capital projects) in favor of priorities like primary and secondary education, and 
healthcare [19]. for example, the revenues that public higher education institutions received in 2021 from state and local 
governments were down 80% from their levels in the 1980s [22]. These structural changes in higher education funding 
have significant ramifications for infrastructural investments related to research. For example, capital projects are com-
plex, require coordination and consensus building with many stakeholders, and often call for years of planning, fundrais-
ing, and construction. The difficult funding regime means that many public universities have a shortage of the facilities 
needed to fulfill the research mission that society expects of them. The impacts of this shortage are felt not just in the 
quality of the faculty and student academic experience, but also in the research productivity of public universities [23].

While more positive than at the state and local levels, the effect of the sluggish growth in federal funding for research 
and development (R&D) has inevitably trickled down to academic institutions. In FY 2020, R&D spending by academic 
institutions totaled $86.4 billion [24]. This was a $2.7 billion (3.3%) increase from FY 2019, which was the slowest growth 
since the 4 years of declining federal funding from FY 2012 to FY 2015 [24]. The long-term trend shown in Fig 1 indicates 
a steady decline in federal funding for R&D facilities as a percentage of all R&D funding starting in the 1950s followed by 

Fig 1.  Federal funding for R&D plants as a percentage of total R&D spending, 1951 to 2020 (source data from: 21).

https://doi.org/10.1371/journal.pone.0336032.g001
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a more recent flattening in funding. This is even accounting for the bumps in federal R&D spending around the bursting of 
the dot-com bubble in the early 2000s, and the Great Recession of 2007–2009. For example, $457 million was spent on 
R&D plants in 1957, accounting for just over 10% of the total federal R&D spending of $4.4 billion. Fast forward 60 years 
to 2017 and $2.7 billion was spent on R&D plants, but this only accounts for roughly 2% of the total federal R&D spending 
of 121.6 billion.

Unexpectedly, the general trend in the decline or stagnation in federal funding for R&D facilities has not spared higher 
education institutions. Data from the Survey of Federal Funds for Research and Development [21] for the years 2018–
2020 (Table 1) shows a pre-Covid 17% drop in federal R&D plant spending for universities and colleges, and a 6% reduc-
tion in funding for university-administered federally funded research and development centers (FFRDCs).

The fewer resources available for the construction of new facilities means there is added pressure on leaders and 
administrators in higher education to “get it right” in terms of fostering the multi- and inter-disciplinary science that attracts 
funding, faculty talent, and the best students. While universities place high hopes on the diminishing pool of new science 
buildings to foster cross-disciplinary scientific collaboration, site selection is a potentially serious blind spot in the process 
of building these new facilities.

Site selection is a complex, multicriteria process involving many factors and stakeholders [25]. Typically, for new 
science buildings at universities, this process is driven by project requirements and criteria including the budget, land 
size, topography, sustainability, accessibility, utility and infrastructure costs, and environmental factors such as air 
quality and solar radiation. Often unaccounted for are the key outcomes of primary interest to the university, such as 
fostering cross-disciplinary scientific collaboration across academic units. These scientific outcomes are contingent 
on both planned and unplanned encounters and interactions among scientists which are shaped to various degrees 
by the topology or configuration of the built environment. The complex and dynamic topological effects of the built 
environment shape collaboration at multiple levels and scales, from that of the individual workspace to that of the 
entire campus.

Traditional approaches to site selection are inadequate for incorporating the imperatives for collaboration into the site 
selection process as they are reductive in that they treat complex, intertwined factors in isolation [26]. In contrast, systems 
approaches, such as network analysis, enable the simultaneous examination of a system and its parts. In this paper we 
present the findings from a research study that applied network analysis to examine site selection for collaboration at a 
new science facility at a major research university in the United States.

Table 1.  Federal obligations and outlays for R&D plants, FYs 2018−20 (dollars in millions).

Performer Preliminary

2018 2019 2020 Δ (2019–20) (%)

Total 3,852.7 4,376.4 4,759.0 8.7

  Intramural 1,252.1 1,092.7 1,652.0 51.2

  Industry 310.9 354.0 207.5 −41.4

  Industry-administered FFRDCs 214.2 428.3 350.3 −18.2

  Universities and colleges 410.4 514.0 427.1 −16.9

  University-administered FFRDCs 761.5 850.0 799.3 −6.0

  Other nonprofit institutions 180.2 169.8 241.9 42.4

  Nonprofit-administered FFRDCs 709.4 956.2 1,076.3 12.6

  State and local governments 0.0 1.2 1.0 −15.0

  Foreign 14.1 10.3 3.5 −65.8

https://doi.org/10.1371/journal.pone.0336032.t001

https://doi.org/10.1371/journal.pone.0336032.t001
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Literature review

Current approaches to site selection.  Site selection is an example of a spatial multicriteria decision making process 
that entails the evaluation of multiple criteria according to often contradictory objectives [27,28]. General multicriteria 
analysis is a decision-making and mathematical tool that gives the decision-maker the ability to compare different 
alternatives or scenarios given these often conflicting criteria so as to make an optimal or judicious choice [29]. Spatial 
multicriteria decision making is the application of multicriteria analysis in spatial contexts where key elements of the 
decision problem, for example, the alternatives or scenarios, criteria, etc. have explicitly spatial dimensions [28]. A 
spatial decision alternative or scenario is comprised of at least two elements [28]: an action (what needs to be done), 
and a location (where it needs to be done). Spatial evaluation criteria are associated with geographical entities, and the 
topological relationships between these entities [28]. These criteria are usually represented in the form of maps, and 
hence the use of geographic information systems (GIS) for spatial multicriteria analysis (SMCA) in a range of applications 
such as urban planning, retail, renewable energy, transportation, and resource management [28,30,31].

The site selection process is an integral part of the success of any building project. Key considerations during this 
process include financial and environmental factors. For example, selecting the wrong site for commercial buildings 
such as shopping malls can have negative upstream and downstream financial effects such as on the profitability of the 
investment [32,33]. For all projects, the site informs design decisions related to the building’s orientation, massing and 
configuration, landscaping, etc. [34]. Moreover, the site shapes the environmental comfort of the building occupants as it 
is directly associated with issues like access to clean air, water, and solar radiation [34,35]. Related to that, the immediate 
site and its environs have significant influences on factors that shape the health and safety of a facility’s occupants and 
users, e.g., crime, cleanliness, and tidiness [32,34].

The criticality of site selection is reflected in the increase in more advanced approaches to the process beyond the intu-
ition or simple heuristics that are prevalent today. These include, for example, multiple-criteria decision-making (MCDM) 
methods such as the analytic hierarchy process (AHP) and the analytic network process (ANP) that provide structured 
techniques for organizing and analyzing complex decisions [36–39]. AHP is an Eigen value approach to pair-wise com-
parisons for quantitative and qualitative variables that helps decision makers arrive at the most logical choice from a set 
of alternatives [40]. An example of the application of AHP in site selection is in the assessment of market factors, envi-
ronmental conditions, regulatory factors, and transportation to determine where to best place a hospital from among 12 
districts in the Mugla province of Turkey [41]. The ANP is considered a generalization of the AHP to feedback networks 
[42,43]. The AHP structures a decision problem as a hierarchy with three types of elements: a goal, decision criteria, and 
a set of alternatives. Each of these elements can be viewed as independent of the others. In contrast, the ANP allows 
dependence among the elements, and by treating them as a network also allows for feedback between the elements 
[44,45]. Thus, the ANP has been proposed as a solution to the problem of selecting the best site for a shopping mall [32], 
though its methodology maintains generalizability across facility types. This process entails an examination of interde-
pendent criteria such as transportation for users, total investment costs, environmental considerations, and development 
potential.

As previously noted, the use of geographic information systems (GIS) to drive or support the site selection process has 
grown in prominence, especially over the past two decades. GIS has been defined as the “organized activity by which 
people measure and represent geographic phenomena then transform these representations into other forms while inter-
acting with social structures” [46]. GIS is a system for understanding the fundamentals of issues unique to spatial data 
such as geolocation, proximity, and distance decay [47–49]. GIS-based approaches enable the combination of spatial 
data such as street networks with non-spatial data such as demographic information related to population and economic 
activities [50]. Major applications of GIS include urban planning [51], transportation analysis [52], public health and epide-
miology [53,54], effects on the built environment on health [55], and crime analysis [56]. Of higher relevance to this paper 
is the use of GIS in location analysis [31], including for specific types such as shopping malls and other retail facilities 
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[57,58], industrial sites [27], and wind turbine farms [30]. There have also been efforts that combine GIS with, for example, 
Building Information Models (BIM) for both site selection and fire management processes [59].

More recently, there has been a rise in the use of data-driven approaches to site selection. Traditional approaches have 
several limitations, such as limits on the complexity of their models, and a reliance on expert or subjective judgments. 
Data-driven approaches are better suited to accounting for the complexity of site selection as a decision-making process. 
For example, supervised machine learning was used to address the retail store placement problem using geographic and 
human movement data from location-based social networks [60]. Another data-driven approach to the retail store place-
ment problem used search query data mined from Baidu Maps, China’s largest online map search engine, to predict and 
rank the number of customers [61]. These data-driven approaches enable more complex models of the site selection pro-
cess compared to traditional approaches. However, in common with traditional site selection, data-driven approaches still 
employ a reductive approach that makes them ill-suited for site selection based on complex, organizational outcomes. For 
example, cross-disciplinary scientific collaboration among scientists at a university is often contingent on the relationships 
among the buildings (and their elements or components) on campus.

We report the results of a novel application of network analysis to examine the structure of the complex systems com-
prised of the interconnected floors and buildings at two potential sites for the PESB on MSU’s campus. We then perform 
analysis to identify which of the two sites has the better structure or configuration for supporting cross-disciplinary collabo-
ration, one of the key imperatives for the PESB.

Site selection & network analysis

Reductive approaches to site selection are ill-suited for the task of site selection for cross-disciplinary collaboration in the 
context of new scientific facilities. Understanding the configuration of the paths or walking routes interconnecting buildings 
on campus and how they shape the potential encounters and interactions associated with cross-disciplinary collaboration 
among scientists calls for a systems approach, such as network analysis. In common with other systems approaches like 
agent-based modeling, network analysis is both a theoretic perspective and set of methods that considers the interrela-
tionships between the components of a system as opposed to focusing on isolated parts of the system, as well as the sys-
tem itself. Moreover, network analysis is agnostic about levels of analysis, meaning that we can also examine systems of 
systems. For example, a graph convolutional network (GCN) built using geospatial and transit data in Singapore revealed 
the spatial interaction patterns of different locations on a map and, subsequently, their impact on store placement [26].

Prior research has identified factors of the built environment that are more supportive of collaboration in knowledge 
work, including multi- and inter-disciplinary science. Several of these factors relate to the proximity effects resulting from 
the configuration or layout of buildings and places and are thus amenable to studies employing the network approach. 
These include, for example, orienting key spaces such as labs and offices to optimize overlaps in the paths taken by 
investigators as this is correlated with the potential or chance encounters that are essential to collaboration and innovation 
[5,6]. Another factor is the minimization of the topological (turns in the shortest paths) and physical distances between the 
members of a potential collaboration dyad [3,4]. Finally, the built environment is more amenable to supporting collabora-
tion when paths or walking routes between potential collaboration dyads have shorter topological distances (fewer turns) 
as this results in space that is less fragmented [13].

To the author’s knowledge, there are currently few if any examples in research or practice where network analysis 
has been employed as an analytic or planning tool for new scientific facilities in higher education. This is a significant 
gap considering the importance and benefits of proper site selection for new scientific buildings in the context of shrink-
ing resources for facility construction across the higher education landscape in the United States. For the science of site 
selection, a key research gap is the absence of methods that simultaneously account for spatial configuration and the 
potential social network dynamics related to site selection, especially the drivers of organizational outcomes like col-
laboration, innovation, and interdisciplinary science. The approach adopted in this study, spatiosocial network analysis, 
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integrates spatial and social network metrics to examine how spatial configurations can support social processes like 
cross-disciplinary scientific collaboration, rather than just optimizing site selection for isolated criteria.

A new approach: Spatiosocial network analysis and visualization

This study uniquely combines spatial and social network analyses and visualization to examine the configurational prop-
erties of two potential sites for a new scientific building. The spatial networks formed by the connections between dis-
crete units in a building, campus, or city are generally planar because both their vertices (the discrete units) and edges 
(the connections between the units) are fully spatially embedded [62]. This means the networks can be represented on 
a flat surface without any of the edges between the discrete units overlapping or crossing each other [63]. In contrast, 
non-planar spatial networks can include spatially embedded vertices with overlapping edges that represent non-spatial 
relationships such as social relationships, telecommunications, etc. [62]. Finally, some spatial networks have both planar 
and non-planar characteristics, like travel routes [62]. A key advantage of the approach outlined in this paper is that tools 
used for social network analysis can be used to powerfully visualize complex planar and non-planar spatial networks to 
better identify patterns, clusters, and anomalies within the network. Even for the planar networks formed by discrete units 
in spatial systems like buildings and campuses, these visualizations can provide deeper insights into the structure and 
dynamics of the system’s network. This is essential when making comparisons between potential sites for the location of a 
new scientific facility.

The organization of social and economic activities in human societies is often contingent on the act of configuring 
continuous space into discrete units that can then be labeled, assigned to specific individuals and groups, and so on [64]. 
This reality is the point of departure for the approach to spatial network analysis known as “space syntax” which was first 
developed in the 1970s and has since been used to examine relationships between spatial layouts, and social, economic, 
and environmental outcomes at multiple levels from building interiors to campuses, cities, and regions [65–67]. As a 
theoretic perspective and computational approach, “space syntax” was intended to help architects employ science-based, 
human-focused spatial network analysis that could better simulate the effects of design solutions on occupants and users 
[68]. For the site selection process, crucial insights can be gained from the examination and comparison of “space syntax” 
whole network measures across different sites. Key whole network measures help us understand not only how spaces or 
discrete units are connected, but also how the movement of people flows through them. While these measures have thus 
far not been applied to the critical task of site selection, the analysis of the measures has been used by architects, plan-
ners, and designers to identify key areas for improvement, optimize spatial layouts for better movement and interaction, 
and understand the social dynamics of different built environments. This approach helps create more efficient, safe, and 
vibrant spaces that are better tailored to human needs.

Social network analysis (SNA) is a theoretical perspective and set of methodologies that are used for the empirical 
study of the patterns of relations among actors in social groups and collectivities, including the structure of relationships 
among actors at different levels of analysis [69]. A network is defined as consisting of the actors which are variously 
defined as “vertices” or “nodes, and the relationships among the actors which are referred to as “edges” or ”ties.” The 
network perspective has transformed the social sciences over the last half century, especially in tandem with advances in 
network methods and the computing power needed to model and study large, complex social networks [70]. Network the-
ory provides powerful explanations for a range of important social phenomena ranging from individual-level outcomes like 
creativity to group-level outcomes like innovation and profitability [71]. SNA provides valuable insights into how informa-
tion, resources, and influence flow within a network. The potential applications of these insights include helping to identify 
key players, potential bottlenecks, and opportunities for intervention or improvement. The network perspective has signifi-
cantly advanced our understanding of the mechanisms of scientific collaboration and innovation in the social structures 
of academic campuses. For example, a study showed that spatial proximity and the sense of community (SOC) construct 
have potentially complementary effects in the network positions of scientists where only some of them were co-located 
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[72]. Another study found that institutional affiliation and spatial proximity were significant drivers of collaborative com-
munities in longitudinal scientific networks [73]. Similarly, a study of collaboration patterns at the Massachusetts Institute 
of Technology (MIT) found that the network topology and community structure were biased by spatial configuration and 
institutional affiliation [3].

The combined application of spatial and social network analyses and visualization is a potent approach to understand-
ing differences across potential sites both empirically and visually.

Methods

Study site and timeline

This study focuses on the application of network analysis to examine the collaboration promotion potential of two sites 
that were considered for the new Plant and Environmental Science Building (PESB) at Michigan State University (MSU). 
The two potential PESB sites are in the area adjacent to the existing plant sciences neighborhood and the Biomedical and 
Physical Sciences Building on MSU’s campus in East Lansing, Michigan (Fig 2).

Fig 2.  MSU campus map with the area comprising of the existing plant sciences neighborhood and the Biomedical and Physical Sciences 
Building shown in the shaded green polygon (source: 77).

https://doi.org/10.1371/journal.pone.0336032.g002

https://doi.org/10.1371/journal.pone.0336032.g002
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The $195 million PESB was conceived with a broad, ambitious scope. It ranges from addressing capacity issues, 
attracting and retaining leading scientists and top students, increasing federal research funding, and expanding the 
critical agricultural research that supports the state of Michigan and the United States [74]. By collocating top scientists 
at the cross-disciplinary intersection of plants and the environment, and placing them in a neighborhood of biomedical 
and physical scientists, PESB is intended to promote synergistic collaborations and new discoveries [74]. The decisions 
around PESB’s potential site locations reflect Vision 2050, MSU’s integrated facilities and land use plan, and infrastruc-
tural requirements [74,75]. That is, in line with Vision 2050, PESB’s location had to be one of the two potential locations 
examined in this study. This study, therefore, played no role in MSU’s final site decision. Rather, the study examines how 
the PESB site selection process could have been done to better account for the organizational imperatives of stimulating 
cross-disciplinary collaborations and discoveries. PESB’s construction will start in October 2024 [76].

The study described in this paper is part of a broader effort to understand the longitudinal, spatiosocial impacts of 
PESB on outcomes related to collaboration, innovation, and translation. This study’s narrower focus on site selection 
for PESB can advance our understanding of how this process can be informed by a key organizational imperative 
for MSU, stimulating cross-disciplinary scientific collaboration. As noted, one of the biggest drivers for site decisions 
around PESB was the strategy outlined by MSU’s integrated facilities and land use plan. This paper focuses on the 
simpler issue of using network analysis to examine the potential of site selection for outcomes like cross-disciplinary 
scientific collaboration [77].

The data collection and analysis period was from March 2023 through June 2024. Work on earlier versions of the 
manuscript commenced in December 2023. Following a conference presentation in June 2024 and additional analysis 
from July to October 2024, work on the final manuscript started in October 2024 and was completed by March 2025. The 
two potential sites (A and B) for MSU’s PESB are part of a much larger plant sciences neighborhood that is bifurcated by 
Wilson Road (Fig 3). Vision 2050 identifies this neighborhood as part of the campus precinct named “Central Campus” 
which has been targeted for investments that expand MSU’s academic and research missions [77]. Our study focuses on 
the buildings in this neighborhood that house current and potential members of the research community that will be relo-
cating to PESB. Note that data collection in March 2023 consisted of obtaining the electronic floor plans for the buildings 
that were used to generate the spatial networks for the two sites from MSU’s Infrastructure Planning and Facilities (IPF) 
organization. The population of interest are the investigators that are slated to move into PESB upon its completion. Spe-
cifically, we examine two potential sites for PESB with respect to which of them is better placed to facilitate the encounters 
and connections among the investigators that correlate to cross-disciplinary scientific collaboration. The investigators 
are all part of an existing research community primarily consisting of the plant sciences, but also spanning multiple other 
disciplines including biochemistry, chemistry, biomedical sciences, and physical sciences. Members of this research com-
munity are also currently collocated across multiple buildings in a larger neighborhood that encompasses the two potential 
sites for PESB.

Site A is north of Wilson Road and has three buildings that are interconnected at the basement level, and by a ramp 
spanning the fourth and fifth floors. These focal buildings are fringed by (but not connected to) three buildings that house 
different research communities from our study population, with plant sciences at its core. Site B is south of Wilson Road 
and comprises five buildings, most of which are interconnected at the basement, first, and second floors. This site is also 
where the majority of future PESB occupants are currently located. Site B also has support facilities such as greenhouses 
and a headhouse.

Spatial network generation

For each of the two potential sites, we constructed a spatial network based on paths or lines of navigation and move-
ment across all the buildings, also known as an axial map [65,66]. This represents the longest straight lines of sight and 
movement within a spatial system. Generating the axial map entailed drawing, in AutoCAD, the set of fewest and longest 
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paths that made all possible connections between individual spaces and rooms, and between the buildings at the floor 
levels where they were interconnected [78]. For each building, staircases are treated as inter-floor connectors and are 
represented by a dummy space during the generation of the spatial network. This raw shapemap was then exported from 
AutoCAD to the depthmapX software application where it was converted into an axial spatial network [79]. The spatial 
network for each site therefore represents all possible connections between spaces or rooms, floors, and the buildings 
housing current and potential members of the PESB research community. The axial spatial networks have several vari-
ables associated with them that measure the local and global properties of a specific path’s location in the spatial network. 
In this paper we will focus on a couple of these whole network variables or measures to illustrate key differences in the 
complexity of the differences in spatial network structure across the two sites.

Fig 3.  Map of the plant science neighborhood showing the two potential sites straddling Wilson Road. (basemap source: 77). The shaded 
areas overlay the buildings that are used to generate the spatial network for each site. The stars represent the proposed locations of PESB at that spe-
cific site.

https://doi.org/10.1371/journal.pone.0336032.g003

https://doi.org/10.1371/journal.pone.0336032.g003
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Visualizations from social network analysis

It is important to visualize the spatial networks for the two sites such that it is easier for individuals without spatial training 
to visually identify the configurational differences between the two sites. People who lack spatial training, including many 
social scientists, may find it difficult to read and interpret diagrams like floor plans and blueprints, and hence the axial 
networks described above. Lower levels of spatial training correlate to lower levels of spatial intelligence, the ability to 
visualize and manipulate objects in a three-dimensional space, which is crucial for understanding these types of diagrams. 
Unsurprisingly, research has found that there are significant differences in spatial intelligence even among advanced and 
beginner architecture students [80]. Further, it is important to account for the fact the spatial network metrics from “space 
syntax” are largely unfamiliar to most scientists who study scientific collaboration and innovation. Therefore, to better com-
municate the topological differences across the two sites, it is helpful to generate the types of measures associated with 
social network analysis as this are currently better understood by a wider cross-section of scientists from the social and 
physical disciplines. Undertaking this approach enables both visual and empirical comparisons of the two sites in ways 
that are easier to understand for a broader audience.

Therefore, we exported the axial maps from the spatial networks platform to social network analysis software applica-
tions in order to generate the types of network graphs familiar to those from the social and physical sciences [79,81,82]. 
We subsequently used these graphs to generate a set of whole network variables that are described in the section to 
follow. This process enhanced the empirical and visual comparisons of sites A and B with respect to their capacity for sup-
porting potential encounters and interactions before the addition of PESB.

Variables

From the axial spatial networks, we generated two primary whole network variables. Note that these variables are 
global in the sense that they capture a focal path’s relationship to all other paths in the spatial network, rather than 
to only a part of the network. “Mean Integration” is the average value of the measure of integration for all the paths, 
which is defined as the average depth of the path from all other paths across the site. This measure shows how easily 
accessible a space is from all other spaces in the network. High integration values suggest central, well-connected 
areas that are likely to attract more activity. “Mean Choice (Normalized)” is the average value of the choice measure 
for all paths across the site and captures the frequency with which the path lies on the shortest connections between 
other pairs of paths at the site. This measure is normalized to account for the size of the spatial network (number of 
nodes), thus making it possible to compare our two sites. The choice measure reflects the likelihood of a space being 
used as a route between other spaces. High choice values indicate spaces that are crucial for through-movement 
and can highlight important pathways or corridors, and the areas where serendipitous or chance encounters are most 
likely to happen.

Using the social network graphs, we computed nine variables for comparisons of the spatial networks for the two sites 
as follows. “Number of nodes” captures the number of paths in all the buildings at the site, while “Number of ties” rep-
resents the connections between these paths. The geodesic distance is the shortest path between two nodes in the net-
work. The “Diameter” represents the length of the largest geodesic distance in the network. The “Average Distance” is the 
mean geodesic distance for all pairs of nodes that are reachable in the network. Degree centrality is a network measure of 
the number of direct connections that a node has. “Average Degree” is the mean degree for all the nodes in the network. 
“Components” captures the number of strong components which are subsets of the graph where all the nodes are directly 
connected to each other. “Fragmentation” equals one minus the proportion of nodes that can reach other nodes by any 
path. “Transitivity” measures the likelihood that two nodes with a connection in common are also connected to each other. 
The “Proportion within three” measure indicates the proportion of pairs of nodes in the network that are within three steps 
or ties of each other.
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To better understand how the two sites differed with respect to the structure of their networks, we also computed the 
variable “Δ” which measures the percentage difference in the values of the network variables above as shown in Equation 
1 below:

	
∆ =

((
ValueSite A – ValueSite B

)
÷ ValueSite A

)
× 100

	 (1)

Understanding how the two sites vary across the network variables described above can help paint a clearer picture of 
what aspects of spatial network structure should be considered during the site selection process. Importantly, this entails 
examining the implications of the spatial network differences across the two sites with respect to potential encounters 
and interactions among the occupants of the buildings on each site and, subsequently, the resultant impacts on cross-
disciplinary collaboration.

Research questions

In the sections to follow, we will focus our discussion of the empirical differences between sites A and B on these whole 
network metrics. This discussion assumes that network analysis can help us identify which of the two sites is better con-
figured for the proximity effects that facilitate potential encounters and interactions among investigators. It is presumed 
that this site would be the better location for the future PESB building given the key organizational goal of stimulating 
cross-disciplinary scientific collaboration.

The previous section on site selection for collaboration using network analysis identifies several factors that render a 
site more likely to support cross-disciplinary scientific collaboration. These factors are operationalized by multiple vari-
ables in this study and will be examined via addressing three research questions which relate to the network variables 
diameter, average topological distance, and fragmentation. Network diameter, the longest shortest path between any 
two nodes in a network, reflects the maximum extent of connectivity and is a good indicator of movement efficiency and 
reachability across the site, key factors in cross-disciplinary collaboration. The average topological distance (or average 
path length) is the mean number of steps required to traverse the site. A lower value would therefore suggest a more 
integrated or navigable site, which could potentially facilitate more chance or unplanned interactions, and hence cross-
disciplinary collaboration. Lastly, fragmentation captures the extent to which the site is broken into disconnected or weakly 
connected components. Lower fragmentation would indicate a more cohesive site, which would ease movement, and 
enhance accessibility and interaction, thus making the site more likely to promote cross-disciplinary collaboration. The 
three research questions are:

•	 RQ1 – is there a difference in the network diameter between the two sites?

•	 RQ2 – is there a difference in the average topological distance between paths or walking routes at the two sites?

•	 RQ3 – is there a difference in the fragmentation of the spatial network of paths or walking routes at the two sites?

In the next section the study findings are used to discuss the research questions above and to compare the two sites to 
identify which of them is more amenable to supporting scientific collaboration.

Results

Spatial network graphs

Figs 4 (site A) and 5 (site B) show the axial spatial networks for the two sites. The networks have been rendered to better 
illustrate which paths of movement or navigation are most central in the spatial network for all the buildings in the site’s 
network. That is, the paths of movement or navigation in each axial spatial network are presented such that we can visu-
ally identify which ones are the most central across the entire site or spatial system.



PLOS One | https://doi.org/10.1371/journal.pone.0336032  November 13, 2025 13 / 21

Social network visualizations

Figs 6 and 7 represent the types of graphs that are more familiar to network scientists. These graphs enable us to make 
visual examinations of how the two sites vary with respect to concepts associated with the network’s connectivity such as 
clusters (groups of nodes that are densely connected to each other), paths (sequences of nodes with no repetition) and 
cycles (closed paths starting and ending at the same node). Site A has cutpoints (the narrow-waisted region) that make it 
more vulnerable than site B which, in contrast, has more cycles or cyclic loops. Thus, site A is like real optimal networks 
in nature, such as leaves or insect wings, which have a high density of cyclic loops that increase resilience to attack and 
damage [83].

Whole network metrics

The combined metrics from the whole network analysis of the networks in Figs 4–7 are shown in Table 2 below. Recalling 
that the fourth column shows the percentage difference in the value of a network variable between the two sites. In the 
interest of brevity, we will limit our discussion of the results to those network variables where the variable Δ between the 
two sites is at least 5.0%.

The two sites have roughly about the same number of nodes (paths) though site B has nearly 8% more ties or connec-
tions between its nodes. Site A has both a smaller diameter and average distance, indicating lower costs for individuals at 
site A with respect to the effort of physically seeking out others at the site.

With respect to the research questions, site A has a network diameter of 31 which is 29% less than site B’s. The results 
provide support for RQ1, that there is a difference in network diameter between the two sites. Site A’s lower network diam-
eter also indicates higher connectivity in its spaces and buildings compared to site B.

Fig 4.  Site A axial spatial network for the measure of integration, which captures how central or easy it is to access the path of movement or 
navigation across the entire site. Map colors indicate path centrality as shown on the legend with paths coded blue having low integration values and 
those coded red having high integration.

https://doi.org/10.1371/journal.pone.0336032.g004

https://doi.org/10.1371/journal.pone.0336032.g004
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Fig 6.  Network graph for site A. The graph for site A reveals that, as is the case with many real-world planar networks where local connectivity is 
crucial, there is high clustering in the network. However, there is also visual evidence for path redundancy and numerous cycles which enhance this 
network’s robustness and failure tolerance as it suggests that there are multiple ways of traversing the network without retracing one’s steps. These 
path-based characteristics of the network facilitate more efficient communication and information flows across the site.

https://doi.org/10.1371/journal.pone.0336032.g006

Fig 5.  Site B axial spatial network for the measure of integration. Map colors on the legend indicate path integration values where the cooler the 
color is, the lower the integration value, and the warmer the color is, the higher the integration value.

https://doi.org/10.1371/journal.pone.0336032.g005

https://doi.org/10.1371/journal.pone.0336032.g006
https://doi.org/10.1371/journal.pone.0336032.g005
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The results indicate that there is an average distance of 13.392 between the paths or walking routes at site A, which 
is 23% lower than at site B. Therefore, the results provide support for research question RQ2. Moreover, these results 
suggest that movement and navigation is more efficient at site A, and that its path network is more interconnected than 
site B’s.

From the results presented in Table 2 we can conclude that there is less fragmentation at site A. Specifically, site A has 
a fragmentation of 0.011 which is 227% lower than site B’s. This indicates that the paths within site A have many connec-
tions among them compared to those at site B, and that there is therefore a higher level of connectedness at site A. Thus, 
the results provide support for research question RQ3. The results can be interpreted to mean that at site A it is easier to 
reach any path or walking route from any other path than at site B.

Table 2.  Comparison of sites A (nodes = 1,562, ties = 5,408) and B (nodes = 1,617, 
ties = 5,834) across select network variables.

Variable Site A Site B Δ (A-B) (%)

Diameter 31 40 −29.0

Average Distance 13.392 16.415 −22.6

Average Degree 3.462 3.608 −4.2

Components 8 22 −175.0

Fragmentation 0.011 0.036 −227.3

Transitivity 0.151 0.237 −57.0

Proportion within three 0.029 0.024 17.2

Mean Integration 0.650 0.523 19.5

Mean Choice (Normalized) 0.010 0.008 25.5

https://doi.org/10.1371/journal.pone.0336032.t002

Fig 7.  Network graph for site B. The graph for site B exhibits high clustering as one would expect for this type of spatial network. Compared to site A, 
however, this site shows evidence for limited path redundancy and fewer cycles. There are fewer alternative paths between nodes (spaces) making the 
network less robust to failure, and more limited ways of traversing the network and returning to the starting point without retracing one’s steps. These 
characteristics can negatively impact the site’s efficiency and overall connectivity.

https://doi.org/10.1371/journal.pone.0336032.g007

https://doi.org/10.1371/journal.pone.0336032.t002
https://doi.org/10.1371/journal.pone.0336032.g007
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The axial spatial network measures in Table 2 reveal additional ways in which paths differ across the two sites. First, 
they indicate that the typical path on site A has a higher integration value which means that it is less deep on average from 
all other paths in its spatial network compared to the typical path at site B. Second, the typical path on site A has a higher 
normalized choice value, indicating that it is likely to have more connections between other pairs of paths passing through it 
than the typical path at site B. This finding implies that the typical path at site A is more likely to have a higher potential flow of 
movement, and hence a higher likelihood of potential encounters between the people who occupy the buildings at the site.

The results shown in Table 2 indicate that the nodes in site A’s spatial network have more cohesion than those in site B’s 
network. In network terms, the site A network is less cliquey than site B’s, as shown by the fact that it has fewer components 
and lower transitivity. The results also show a lower fragmentation for site A, giving us more evidence that the paths (and 
spaces) in site A are more tightly connected within the site than is the case for site B. The smaller number of strong com-
ponents in site A compared to site B shows that the former has low clustering as components can have weak ties to other 
parts of the network, even as all the nodes in the network have strong ties with each other. Coupling site A’s lower average 
distance with its higher proportion of nodes that are reachable within three steps suggests higher connectivity and efficiency 
compared to site B, as pairs of nodes or paths in site A’s spatial network are reachable in fewer steps. Overall, the results 
indicate that site A’s configuration can engender more potential encounters and interactions than site B, as it is better con-
nected and more efficient with respect to movement and navigation across all spaces, floors, and buildings.

Discussion

The study findings provide support for the research questions regarding the differences in network characteristics 
between site A and site B. First, the network diameter of site A is lower than that of site B. This supports RQ1, indi-
cating that site A has higher connectivity within its spaces and buildings compared to site B. A lower network diame-
ter suggests that any two points within site A are closer together, facilitating easier and quicker navigation. Second, 
regarding RQ2, the average distance between paths or walking routes at site A is lower than at site B. This finding 
implies that movement and navigation are more efficient at site A. The reduced average distance enhances accessibil-
ity and reduces travel time within the site. Third, the results also address RQ3 by demonstrating that site A has a lower 
fragmentation than site B’s. This lower fragmentation indicates a higher level of connectedness within site A, meaning 
that paths are more interlinked, making it easier to reach any path from another. This interconnectedness is crucial for 
efficient movement and accessibility.

Further analysis of axial spatial network measures reveals that site A has higher integration and normalized choice 
values. These metrics suggest that paths at site A are less deep from all other paths and have more connections 
between other pairs of paths passing through them. Thus, the results indicate that site A’s spatial network is more 
compact and better connected than site B’s. Consequently, site A is likely to experience a higher potential flow of 
movement and more frequent encounters among occupants. From the perspective of stimulating cross-disciplinary 
scientific collaboration, this has multiple advantages. Site A offers higher efficiencies with respect to potential travel 
times for movement and navigation. The smaller average distances that site A has can also facilitate the exchange 
and diffusion of information, resources, and even innovation. This has positive effects on accessibility across the site, 
and collaboration within the site.

Moreover, the cohesion of nodes in site A’s spatial network is greater than in site B’s, as evidenced by fewer compo-
nents and lower transitivity. This indicates that site A is less fragmented and more tightly connected, enhancing overall 
connectivity and efficiency. The combination of lower average distance and higher reachability within three steps further 
underscores site A’s superior connectivity and efficiency. The lower fragmentation at site A coupled with the fact that 
it has fewer strong components means that there are more paths that intersect with each other across the site, mak-
ing it more likely that site occupants will have serendipitous encounters with one another on a regular basis. This has 
significant implications for cross-disciplinary collaboration given the evidence for the importance of serendipity during 
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different stages of the collaboration process [84–86]. The fact that the site A configuration has more paths that intersect 
also makes it more likely that there will be more overlaps in the functional paths taken by individuals on a regular basis. 
The greater the functional path overlap between a pair of scientists, the more likely it is they will collaborate [5]. More-
over, larger functional path overlaps between potential collaboration dyads are also associated with a better likelihood 
of success for scientists [5].

The other advantage site A has is with respect to the cognitive maps of the site occupants. Cognitive maps are men-
tal representations of the spatial information needed to navigate and locate resources in our environment [87]. For our 
purposes, a cognitive map is also a person’s mental representation of the network that is acquired through exploration and 
navigation, over time. The topology or configuration of a spatial network has significant impacts on the accuracy of indi-
viduals’ cognitive maps [88]. And the more accurate one’s cognitive map, the easier their wayfinding and sense of spatial 
orientation [89], which affects their ability to locate others and resources in the spatial system. The legibility of a spatial 
system is the degree to which it aids people in creating effective cognitive maps [90–92]. The topology or configuration 
of a spatial system is a key objective factor that shapes its legibility due to its direct impacts on a person’s spatial cogni-
tion [90,91,93–95]. Higher integration values are associated with better spatial legibility [96] which, based on the study 
findings, suggests that site A should be more legible than site B, and that the former should also be associated with more 
accurate cognitive maps for its occupants. Prior research suggests that more accurate cognitive maps enable people to 
communicate and collaborate more effectively [97].

Generally, the findings imply that Site A’s topology or configuration is more likely to stimulate and support cross-
disciplinary collaborations. For example, site occupants are more likely to have better or more accurate cognitive maps 
of the entire site including the locations of potential collaborators. The key drivers behind MSU’s decision to build PESB 
included stimulating scientific collaboration, retaining current members of the plant science community, and attracting new 
talent. It is therefore imperative that a site’s potential for supporting scientific collaboration should be one of the important 
factors that are considered during the site selection process. The network analysis described in this paper identified site 
attributes that are correlated with collaboration, and revealed that these factors were stronger at site A compared to site B.

Conclusions

In an era of declining or stagnating federal funding for R&D facilities in higher education, it is critical that the design and 
construction of new facilities be in complete alignment with the primary objectives of higher education institutions. These 
include the need to stimulate cross-disciplinary scientific collaboration, which is directly correlated to the institution’s suc-
cess in research and access to funding, and the recruitment and retention of talented faculty and students. Site selection 
is an integral part of every new building, including scientific facilities. However, organizational objectives such as the 
catalysis of cross-disciplinary collaboration are seldom, if ever, accounted for during the site selection process. There are 
several reasons why this is the case. One of them is that typical approaches to site selection are too reductive to accom-
modate the complex interrelationships of the factors associated with collaboration, such as the topology or configuration 
of the built environment. Systems approaches, such as the network analysis presented in this paper, make it possible to 
select a site based on desirable organizational outcomes, like cross-disciplinary scientific collaboration.

Another reason is that, in line with the traditional atomistic approach to site selection, little is done to understand how 
the construction of a new scientific facility is a systems intervention (the building) in an existing, complex system of sys-
tems (the campus). With its agnosticism about levels of analysis, networks analysis enables us to examine systems of 
systems. Thus, we can develop a better-informed sense of where to best locate new facilities so that we can optimize or 
maximize for the objectives that are critical to the bottom lines of higher education institutions. In the long run, given that it 
is more likely than not that we will build increasingly fewer new scientific facilities relative to the overall national expendi-
tures on the research enterprise, future work could explore the cost-effectiveness of the network approach outlined in this 
study. It is well understood that it is important to select a site with favorable environmental conditions as this can reduce 
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the need for costly future modifications and better ensure the sustainability of the facility. It is standard practice to include 
environmental considerations like natural light, air quality, and thermal conditions, all of which are essential for creating 
built environments that are conducive for research in fields such as the plant sciences. Just as important, however, is stra-
tegically locating scientific facilities to foster the multi- and inter-disciplinary science that higher education institutions are 
desperately seeking to stimulate with each increasingly diminishing opportunity to construct a new science building. This 
study suggests that it is possible to analyze potential sites for new scientific facilities in terms of their potential for scientific 
collaboration. This allows us to steward scarce resources in ways that are more cost-effective, environmentally sustain-
able and responsible, and likely to meet key organizational imperatives.

Aligning the site selection process with key organizational imperatives in higher education promotes the long-term via-
bility of new scientific facilities. This is because, as alluded to earlier, facilities are less likely to need costly modifications 
or be torn down for not supporting the key outcomes of organizational imperatives like cross-disciplinary collaboration, 
factors such as talent attraction and retention. In this study it was straightforward to identify which of the two potential sites 
was better suited for the PESB at Michigan State University. Overall, site A’s network is less fragmented, more cohesive, 
and more efficient, making it better suited for fostering interactions and efficient movement across its spaces. In other 
words, site A is better suited for PESB given the university’s imperatives around scientific collaboration. But it is conceiv-
able that there are potential instances where there may not be a clear-cut difference between two or more potential sites. 
Future studies could address these scenarios and focus on the development of more sophisticated metrics that can facili-
tate the adoption of the network approach for the site selection process.
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